
Computers in Biology and Medicine 43 (2013) 1011–1022
Contents lists available at SciVerse ScienceDirect
Computers in Biology and Medicine
0010-48
http://d

n Corr
Seoul N
fax: +82

E-m
journal homepage: www.elsevier.com/locate/cbm
GPU-based acceleration of an RNA tertiary structure
prediction algorithm

Yongkweon Jeon a, Eesuk Jung b, Hyeyoung Min c, Eui-Young Chung b, Sungroh Yoon a,d,n

a Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-744, Republic of Korea
b Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
c RNA Biopharmacy Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
d Bioinformatics Institute, Seoul National University, Seoul 151-747, Republic of Korea
a r t i c l e i n f o

Article history:
Received 3 November 2012
Accepted 14 May 2013

Keywords:
RNA
RNA structure prediction
Parallel algorithm
Multi-core CPU
GPGPU
25/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.compbiomed.2013.05.007

esponding author at: Department of Electrica
ational University, Seoul 151-744, Republic of
2 871 5974.
ail address: sryoon@snu.ac.kr (S. Yoon).
a b s t r a c t

Experimental techniques such as X-ray crystallography and nuclear magnetic resonance have been useful
for the accurate determination of RNA tertiary structures. However, high-throughput structure determina-
tion using such methods often becomes difficult, due to the need for a large quantity of pure samples.
Computational techniques for the prediction of RNA tertiary structures are thus becoming increasingly
popular. Most of the existing prediction algorithms are computationally intensive, and there is a clear need
for acceleration. In this paper, we propose a parallelization methodology for the fragment assembly of RNA
(FARNA) algorithm, one of the most effective methods for computational prediction of RNA tertiary structure.
The proposed parallelization scheme exploits multi-core CPUs and GPUs in harmony to maximize their
utilization. We tested our approach with a number of RNA sequences and confirmed that it allows the time
required for structure prediction to be significantly reduced. With respect to the baseline architecture
equipped with a single CPU core, we achieved a speedup of up to approximately 24� (roughly 4� by multi-
core CPUs and 20� by GPUs). Compared with a quad-core CPU setup, the proposed approach delivers an
additional 12� speedup by utilizing GPU devices. Given that most PCs these days have a multi-core CPU and
a GPU card, our methodology will be very helpful for accelerating algorithms in a cost-effective manner.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The role of RNA molecules in biology is amazingly diverse. They
can carry and decode genetic information, work as part of protein-
synthesizing machine, catalyze chemical reactions, and regulate
gene expression. Such a variety is possible because RNAs can vary
their tertiary structures they adopt in different conditions [1]. RNA
tertiary structure determination is therefore important for under-
standing RNA functions and interactions. Experimental techniques
such as X-ray crystallography and nuclear magnetic resonance
(NMR) have been useful for the accurate determination of RNA
tertiary structures, but high-throughput structure determination
using such methods often becomes difficult, due to the need for a
large quantity of high-purity samples [2]. Furthermore, there are a
number of functionally important RNA states whose structures
cannot be directly determined by high-resolution techniques [3,4].
To understand the structure–function relationships for these RNAs,
we need accurate tertiary structure modeling [4].

The field of RNA structure modeling and prediction is thus
receiving growing attention. There exist various approaches [5–10],
ll rights reserved.

l and Computer Engineering,
Korea. Tel.: +82 2 880 1401;
and their common goal is to provide an accurate structural model
of RNA and prediction methods useful for designing and verify-
ing biological hypotheses [4]. The prediction of native-like RNA
structures typically needs algorithms with high computational
complexity and involves a huge number of precise floating-point
number calculations [2]. The computation takes longer for a longer
RNA sequence, and the prediction of a non-trivial RNA sequence
can easily become prohibitively time consuming. Genomic data-
bases are growing fast, and the need for a rapid prediction tool is
becoming increasingly clear.

In this paper, we present a GPU-based parallelization scheme of
the fragment assembly RNA (FARNA) algorithm [6] in the Rosetta
software suite [11]. FARNA is one of the most powerful computa-
tional methods for modeling native-like RNA structural motifs
with high resolution [1] and can recapitulate many non-Watson-
Crick base pairs seen in native structures, which are crucial for
accurate modeling. Ideally, prediction algorithms could be run on a
supercomputer or a cluster of servers. Such a powerful computing
environment is not available to every researcher, however, and
affordable microprocessor-based PCs have been the workhorse
for executing prediction algorithms in many cases. Another nota-
ble trend in computer architecture is the use of graphics proces-
sing units (GPUs) for general-purpose computing. These days,
GPUs have hundreds of processing units embedded within them,
and the growth in raw performance of GPUs has been outpacing

www.elsevier.com/locate/cbm
http://dx.doi.org/10.1016/j.compbiomed.2013.05.007
http://dx.doi.org/10.1016/j.compbiomed.2013.05.007
http://dx.doi.org/10.1016/j.compbiomed.2013.05.007
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compbiomed.2013.05.007&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compbiomed.2013.05.007&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compbiomed.2013.05.007&domain=pdf
mailto:sryoon@snu.ac.kr
http://dx.doi.org/10.1016/j.compbiomed.2013.05.007


Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–10221012
that of CPUs. The many-core architectures such as GPUs are
significantly more efficient in terms of arithmetic operations per
units of energy or per transistor [12] and have been used for
accelerating molecular modeling [13,14]. To the best of our knowl-
edge, this paper is the first attempt to parallelize FARNA
using GPUs.
RNA Sequence

Initialize and prepare starting point

Heat with random fragment insertion

Minimize full atom structure

Relax RNA after fragment assembly

Filter for models that satisfy structure

Predicted RNA 3D model

RNA fragment
database

Additiona linput
(RNA

secondary
structure, base
pair constraint,

etc.)

M
onte C

arlo C
ycle

Fig. 1. Overall flow of FARNA. Given an RNA sequence and additional input such as
its secondary structure and base pair constraints, the FARNA algorithm carries out a
sequence of steps to predict the tertiary structure of the input sequence. The main
body of the algorithm consists of four steps (random fragment insertion, atomic
structure minimization, relaxation after assembly, and filtering) based on Monte
Carlo simulation cycles.
2. Background

2.1. RNA structure prediction

In order to understand the function an RNA and its interaction
with other molecules, it is critical to identify the tertiary structure
of an RNA. However, the accurate determination of the three-
dimensional structure and folding kinetics of RNAs remains chal-
lenging experimentally. It is often difficult to use X-ray crystal-
lography or nuclear magnetic resonance for high-throughput
structure determination, due to the need for the preparation of
large quantities of RNA samples with high purity and technical
limitations [2]. Consequently, the computational prediction of RNA
tertiary structures and folding is becoming increasingly popular
and important. Table 1 lists the existing computational methods for
RNA tertiary prediction. In contrast to the advances made in
algorithms for predicting protein folding, the computational pre-
diction of RNA structures is still in its infancy.

There has been a great deal of interest in the modeling of 3D
protein structures, and the methods developed for proteins may
be useful in the context of RNA as well [15]. However, there exist
key differences between RNA and protein structures, which must
be considered when developing an algorithm for RNA structure
prediction. Most obviously, an RNA sequence consists of only four
types of bases, whereas a protein sequence can have 20 types of
amino acids. Secondly, RNAs are highly negatively charged and can
create strong intermolecular and/or intramolecular electrostatic
interactions within and/or outside the molecules. In addition, the
formation of the secondary and tertiary structures is much more
clearly separated in the time domain for RNAs. Lastly, significant
topological constraints can be put on the RNA molecule by the
intimate intertwining of the two parts of the RNA strand.

2.2. Fragmented assembly of ribonucleic acid

The fragment assembly of RNA (FARNA) algorithm [6] was
developed to predict RNA tertiary structure based on the mini-
mum energy required to form RNA structure with great stability.
FARNA was inspired by the low-resolution protein structure
prediction algorithm included in the Rosetta suite [11]. The Rosetta
software (https://www.rosettacommons.org) has been widely
used for macromolecular modeling and includes tools for structure
Table 1
Computational methods for RNA structure modeling and prediction. The existing comp

Tool Input Model Simulation

BARNACLE [5] Sequence Coarse-grained Relica exch
dynamics

FARNA [6,7] Sequence, secondary
structure

Coarse-grained Fragment a
Monte Carl

iFoldRNA [8] Sequence Coarse-grained Replica exc
molecular d

MC-Fold/MC-Sym [9] Sequence, secondary
structure

Nucleotide cyclic
motif

Fragment a
Las Vegas a

NAST [10] Secondary structure, tertiary
contacts

Coarse-grained Molecular d
inference, design, and modeling of nucleic acids and proteins. For
accurate modeling, it is critical to consider non-Watson–Crick pairs
such as a wobble base pair and a Hoogsteen base pair [1], and
FARNA cannot only reproduce canonical Watson–Crick pairs accu-
rately but also recapitulate many of the non-Watson-Crick pairs
seen in the native structures [6].

FARNA models an RNA sequence by a string of beads, each of
which is assumed to be centered at a base. In this coarse-grained
model, three bases are grouped together and considered at a time.
Given a sequence of the target RNA, FARNA assembles short
fragments from existing RNA crystal structures whose sequences
match the subsequences of the target RNA. To this end, a 3D struc-
ture library is utilized. This library contains 3-nucleotide frag-
ments taken from a large rRNA subunit, from which the torsion
angles and ribose puckering parameters are extracted and stored.
To assemble the fragments into native-like structures, FARNA relies
on a Monte Carlo simulation, which is guided by a knowledge-
based energy function that considers the backbone conformations
and side-chain interactions in solved RNAs.
utational methods for RNA tertiary prediction.

method Description

ange, molecular A Python library for the probabilistic sampling of RNA
structures that are compatible with a given nucleotide
sequence and that are RNA-like on a local length scale

ssembly,
o

Uses 3-nt fragment library, Monte Carlo simulations and a
potential function to predict the structure

hange,
ynamics

Uses discrete molecular dynamics and force
fields to simulate RNA folding dynamics

ssembly,
lgorithm

Predicts RNA structures using free energy
minimization with structure assembled using
the fragment insertion by Las Vegas algorithm

ynamics Performs molecular dynamics simulations guided by a
knowledge-based statistical potential function

https://www.rosettacommons.org


Launch CPU CPU CPU CPU

Launch CPU CPU

CPU

CPU

CPU CPU

CPU

CPU

CPU

Launch CPU GPU CPU GPU CPU GPU CPU (1 CPU + 1 GPU)

Launch CPU CPUCPU GPU CPU CPU

CPU CPU GPU

CPU GPU CPU

CPU CPU GPU

(4 CPUs + 2 GPUs)

Launch
GPU GPU GPU

CPU CPU CPU CPU CPU CPU (1 CPU + 1 GPU)

Launch CPU CPU CPUCPU
GPU

CPU CPU

CPU CPU CPU

CPU CPU
GPU

CPU

CPU CPU
GPU

CPU
GPU

(4 CPUs + 2 GPUs)

Fig. 2. Comparing different execution flows. The sequential execution in (a) corresponds to the one without any parallelization, (b) presents the fork–join model used by
OpenMP and other software designed to facilitate parallelization, (c) shows the synchronous CPU/GPU hybrid execution flow and (d) depicts the asynchronous hybrid
execution flow that we utilize in this paper.

Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–1022 1013
Fig. 1 shows the overall flow of FARNA. The two major tasks
involved are energy minimization and fragment assembly. The
goal of the energy minimization process is to find the most stable
state with the minimum energy. The energy function used is a sum
of parameters such as the radius of gyration, penalty for steric
clashes between atoms, base-paring potentials, coplanarity of
pairing and stacking rewards. The fragment assembly task uses a
Monte Carlo simulation [16] and, in each step of the simulation, a
random position is chosen in the chain and the torsions for three
bases are replaced with those from a randomly selected fragment.
After initialization, the fragment assembler carries out 50,000
fragment insertions with the RNA energy function. To increase
the accuracy, it is also possible to incorporate residue–residue
interactions at the resolution of a single nucleotide using multi-
plexed hydroxyl radical ð�OHÞ cleavage analysis (MOHCA) [7].
The incorporated residue-level interaction information is called
MOHCA constraints. In the method section, we will elaborate the
major steps involved in the FARNA algorithm, identify computa-
tional bottlenecks, and propose parallelization schemes of such
rate-limiting steps.

2.3. Parallelization with CPU/GPU

Today, most PCs are equipped with multi-core CPUs, which can
be exploited for accelerating bioinformatics algorithms. Program-
mers can utilize software tools that help them analyze their
workload and eventually parallelize algorithms more easily. For
shared-memory machines such as PCs with multi-core CPUs,
OpenMP [17] has become popular. OpenMP provides an applica-
tion programming interface (API) for programming in C, C++
and Fortran. A programmer can conveniently parallelize a piece
of existing code by inserting compiler directives, API routines
and environment variables. The early versions of OpenMP relied
heavily on the fork–join model for multi-threading, in which a
master thread dynamically creates (“forks”) and merges (“joins”) a
number of slave threads. Additional details on the fork–join model
and other related approaches can be found in Section 3.1.

The newest release of OpenMP (version 3.0 or later) addition-
ally supports a new task-sharing model in which a unit of parallel
work called an explicit task is used to express unstructured
parallelism and to define dynamically generated units of work.
Our approach described in this paper utilizes OpenMP 3.0 and this
new task-sharing model, which was impossible to implement by
the traditional fork–join model. Additional examples of paralleli-
zation aids for shared memory machines include POSIX threads
(Pthreads) [18], which allows a lower level of abstraction and tools
than OpenMP.

While we consider parallelization on CPUs as software multi-
threading, parallelization via GPUs can be thought of as hardware
multi-threading. The programmable GPU devices from NVIDIA are
structured as arrays of multi-threaded streaming microprocessors
[19]. CPU cores aim at processing a single instruction as fast as
possible, but GPU cores try to increase the throughput of running
a set of instructions. The compute unified device architecture
(CUDA) developed by NVIDIA [19,20] is a development toolkit that
programmers can exploit for expressing and accessing massively
parallel graphic cores for general-purpose computing. Using CUDA
API routines, programmers can modify their C/C++ code so that
certain portions of it can be executed on a GPU device. Only those
functions that can benefit from GPU acceleration need to be
developed in CUDA, while the rest of the code can remain in C/C
++. The CUDA-modified code will be executed on a GPU device,
whereas the rest will be run on the host CPU. The memory
architecture of a GPU is different from that of a GPU. For example,
a CUDA device typically consists of registers, shared memory,
global memory, constant memory and texture memory [20]. It is



Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–10221014
important to understand and exploit this memory hierarchy to
maximize the degree of parallelization and performance of a GPU.

For better performance, we need to minimize the frequency
and amount of data transferred between a GPU and its host
CPU. This is because of high communication cost between them.
When use the global memory in a GPU, we need to access it in a
coalesced manner so that the access latency can be reduced. Addi-
tionally, we can exploit the fact that shared memory is normally
much faster than the global memory in a GPU, although the former
is smaller than the latter.
3. Methods

This section describes the proposed methodology for paralle-
lizing the FARNA algorithm. Before describing our approach, we
first compare the different execution flows for parallelization
depicted in Fig. 2.

3.1. Execution flows

The sequential execution in Fig. 2(a) corresponds to the one
without any parallelization. The CPU is utilized sequentially. Fig. 2(b)
presents the fork–join model used by OpenMP [17] and other
software designed to facilitate parallelization. In this model, the
root process of the CPU spawns multiple child processes (or
threads) when there is work to do in parallel and, when the work
is done, the threads end and the master process takes up the flow
and continues. Typically, each thread is assigned to a single CPU
core. The above two models assume that there is no use of GPUs.

The top diagram in Fig. 2(c) shows the synchronous CPU/GPU
hybrid execution flow, where the “host” CPU and its “device”
GPU take turns in processing the workloads, but they never run
simultaneously. For instance, the work proposed in [21,22] belongs
to this category. In this model, a CPU acts as the host for a GPU and,
after the CPU launches a kernel (or a set of threads) on the GPU,
the CPU idles until the GPU completes its job and signals this to
the CPU. This model is not much different from the sequential
execution flow in the sense that only one processing core (either a
host CPU or a GPU) is utilized at a time. Typically, different types of
workloads are assigned to CPUs and GPUs in this model. This
conventional model can be extended to a system with multiple
CPUs and GPUs, as depicted in the bottom of Fig. 2(c). Still, the host
(CPU) and device (GPU) pair never runs simultaneously, although
multiple execution flows consisting of a CPU/GPU pair can exist.

In this work, we utilize the so-called asynchronous hybrid
execution flow, as shown in Fig. 2(d). In this model, the host CPU
launches a kernel for the GPU as in the conventional model,
but the CPU does not idle waiting for the GPU to signal the CPU.
Instead, the CPU performs its own task after launching a kernel for
its device GPU. Consequently, the utilization of computing ele-
ments can be increased over the synchronous model. This asyn-
chronous hybrid model is well supported by the newest OpenMP
task constructs and the asynchronous communication capability of
the CUDA framework NVIDIA recently provides.

Note that most algorithms that utilize GPUs are CPU/GPU
hybrid in that the main algorithm is executed on CPU and compu-
tational kernels on CPU and GPU. Nonetheless, the use of the
asynchronous execution flow is relatively new. The asynchronous
hybrid execution flow can be implemented in any of the CUDA
versions currently available.

3.2. Hierarchical examination of the FARNA algorithm

Fig. 3(a) shows the top-level flow of the FARNA algorithm [6].
It is implemented in C++, and a few notable classes include
ChemicalManager (manages different sets of atoms and
residues), ScoreFunctionFactory (a collection of func-
tions to calculate energy scores), MonteCarlo (responsible for
all the functions applying the Metropolis criterion in Monte Carlo
simulation), RNA_DeNovoProtocol (handles the RNA mod-
eling), and RNA_Minimizer (minimizes the RNA full atom
structure). Step 1 carries out input argument processing, and Steps
2 and 3 initialize the ChemicalManager and Score-
FunctionFactory classes, respectively. Step 4 reads in the
input sequences in a FASTA-formatted file. Steps 6–10 perform
additional initialization. Step 11 is the main step responsible for
applying the fragment assembly protocol to the input sequence,
taking on average 93.3% of the total running time, according to our
profiling. We parallelize Step 11, namely the RNA_DeNovo-
Protocol::apply function. Step 12 releases the RNA_De-
NovoProtocol class and wraps up the whole procedure.

At the second-level, Fig. 3(b) shows more details of the
RNA_DeNovoProtocol::apply function. Steps 13 and
14 initialize the starting positions of simulation and scoring
functions. Step 15 is to insert random fragments and corresponds
to the “Heat with random fragment insertion” step in Fig. 1.
Through Steps 16–18, various position candidates are tried, and
the minimization occurs in Step 19. This RNA_Minimizer::
apply function corresponds to the “Minimize full atom struc-
ture” step in Fig. 1 and is to apply the loop-rebuild protocol to the
minimization of the RNA full atom structure. Step 19 takes most of
the running time of Step 12 (approximately 91.8% of the total
running time) and is therefore the target of parallelization. Steps
20–22 correspond to the last two steps in Fig. 1, relaxing RNA after
the assembly procedure and identifying the lowest scoring pose.

Lastly, Fig. 3(c) shows the details of Step 19, or the RNA_Mi-
nimizer::apply function. This step is to find the state in
which the residue atoms are arranged in such a way that their
pairwise energy is minimized. The minimization problem is formu-
lated using a graph, where vertices correspond to residue atoms and
the weight of an edge between two vertices represents their pairwise
energy. The core in the minimization procedure is Step 25, which is
to carry out the line minimization based on the minimum bracketing
and Brent's method [23]. Note that this minimization is realized by
traversing four paths in order, as indicated in Fig. 4. According to our
profiling, paths 1–4 took on average 46.6%, 12.9%, 8.4%, and 22.6% of
the total running time, respectively. The other steps in Fig. 4 took
negligible time. Consequently, we targeted parallelizing the proce-
dures inside Step 25, as will be explained next.

3.3. Identification of parallelization target and details of
parallelization

Step 25 in Fig. 3(c) consists of many subroutines. Among these,
Steps 27–30 are inappropriate for parallelization because there is
strong loop dependency coming from iterative updates of para-
meters (Steps 27, 28, and 30) or no loop to exploit for paralleliza-
tion (Step 29). Steps 31–35 calculate the pairwise energy between
edges in the minimization graph stated above, and provide ample
opportunities for parallelization because of lack of dependency
between calculating energy for different states.

We map the nodes (residues in RNA) in the minimization graph
to GPU blocks and let each thread in a block compute the pairwise
energy between edges in the graph. More specifically, the nested
for-loop inside Step 33 is assigned to GPU block, and each thread
in a block runs Step 35, which is composed of nested for-loops for
energy computation. (Step 34 needs no parallelization in that it
simply calls Step 35 once). The number of kernels executed is the
same as the number of calling Step 33. Note that the thread
assignment is independent of the input sequence length, because
the number of atoms in a residue does not change. (As the



Fig. 3. Details of implementation of FARNA algorithm. This figure shows the details of the FARNA implementation in a hierarchical fashion, (a) presents the top-level view of
the major steps of FARNA, among which the RNA_DeNovoProtocol::apply function (Step 12) is the most time consuming, (b) magnifies Step 12, which consists of
a series of procedures to drive the minimum energy configuration. Step 19 is the most time-consuming one, which is further detailed in (c). There are four paths in (c), and
the exact sequence of steps for each path is shown in the legend.

Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–1022 1015



CPU

D
ynam

ic Task
S

cheduler
M

em
ory

P
rocessor

Task Distribution
Unit

Data Decomposition
Unit

Task Synchronization
Unit

GPU 1 GPU 2Core 1

GPU
Memory

System Memory

GPU
Memory

Core 2

Core 3

Core 4

A Container for Bookkeeping Data

Fig. 4. Overview of dynamic task scheduler. This figure shows the overall architecture of the dynamic task scheduler, which is responsible for dynamically scheduling tasks
for CPUs and GPUs.

Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–10221016
sequence length increases, only the number of blocks changes,
because the number of residue increases.)

As for using GPU memory, we use the shared memory in order
to store the pairwise energy values computed from a block in a
coalesced fashion. Regarding the host-to-device transfer, we need
to send the information on the edges and nodes in the minimiza-
tion graph: the base sequence, the tables for storing various stat-
istics and the energy parameters for computing the loop energies.
The number of transfers is roughly the same as the number of
edges in the graph. By using the asynchronous execution flow, the
overhead of this transfer is reduced. To implement the asyn-
chronous hybrid execution flow, we exploited the asynchronous
communication capability NVIDIA provides. On top of this cap-
ability, the notion of pinned memory is defined, and the host CPU
and the GPU device can share the same memory space. The
number of the device-to-host transfer is identical to the number
of kernel executions. This overhead can also be alleviated by using
the asynchronous execution flow.

To increase the utilization of CPU, we implemented the soft-
ware called the dynamic task scheduler, which is responsible for
scheduling tasks for CPUs and GPUs dynamically. Fig. 4 shows the
overall architecture of our approach to implementing this hybrid
parallel execution flow. For the sake of simplicity, we assume in
the figure that there are four CPU cores and two GPU modules in
the system. The dynamic task scheduler consists of three units: the
data decomposition unit (DDU), the thread distribution unit (TDU)
and the thread synchronization unit (TSU). These units cooperate
in order to decompose the data to be processed, distribute work-
loads to computing elements and synchronize them.

3.4. Details of dynamic task scheduler

We provide more details of the dynamic task scheduler, which
can be explained best by using an example, as shown in Fig. 5. As
before, we assume that the system has four CPU cores and two
GPU modules installed. Furthermore, we assume that each GPU
module has eight GPU cores. We also assume that the input is an
array of 99 elements of a certain type.

First, the data decomposition unit examines the input array and
partitions it into three chunks, as shown in Fig. 5 (steps 1 and 2).
Two of these three chunks have eight elements each, and each
chunk will be processed by a GPU module. The remaining chunk
has 83 (¼99−16) elements and will be dynamically processed by
either the CPU cores or the GPU cores. Each of the two chunks
with eight elements is assigned a single data ID, since all of the
elements in each of these chunks will be collectively copied from
the main memory to the device memory. In contrast, each element
in the largest chunk with 83 elements is assigned a data ID for the
time being (as will be explained shortly, the elements in this
largest chunk can be grouped into new chunks consisting of eight
elements each later).

Once the data decomposition has completed its task, the thread
distribution and thread synchronization units come into the
picture. We first introduce the data structures used by these two
units. As indicated in Fig. 5, the thread distribution unit keeps two
tables, namely the ongoing-task list and the upcoming-task list.
The former is used to store the information of the tasks that are
currently being executed in a processing element (either a GPU
or CPU), whereas the latter is used to manage the tasks that
are waiting for assignment to processing elements. The thread
synchronization unit maintains the idle status of each processing
element in the system using a table called the processor status
table.

Now, we describe how the dynamic task scheduler works by
exploiting the bookkeeping information stored in these tables. In
step 3, the upcoming-task list is filled with two entries, one for
each GPU module. Each entry in this table contains a task index
(TI) and a data index (DI). For a GPU, each TI corresponds to the
kernel (i.e., a set of threads in the GPU card) index; for a CPU, each
TI indicates the thread index executed on the CPU core. (For



Fig. 5. Dynamic task scheduler. Example explaining how the dynamic task scheduler works.

Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–1022 1017



C
on

fig
ur

at
io

n

0 1 2 3 4 5

1C

4Ca

4Cb

8C

Speedup

(baseline)

C
on

fig
ur

at
io

n

G92a

G92b

GF106

GT200

GF104

Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–10221018
convenience, a GPU task index has prefix g and a CPU task index
has prefix c in this example.) A DI indicates the index of the data
chunk or the elements, as explained above. At this moment,
no processing element has work to do, and this information is
recorded in the processor status table. In this table, each entry
contains the processing element ID (Cn for a CPU and Gn for a GPU
in this specific example) and its running status (0 for running
and 1 for idle).

In step 4, the two entries in the upcoming-task list are moved
to the ongoing-task list. That is, data chunks d1 and d2 are copied
from the main memory to the device memory and the two GPU
modules start working. The processor status table indicates this
fact by changing the status of processing elements G1 and G2 from
0 to 1. Similarly, in step 5, elements d3–d6 are moved from the
upcoming-task list to the ongoing-task list, indicating that these
elements are assigned to the four CPU cores for processing. Now,
all of the processing elements in the system are busy, and the RS
fields in the processor status table are all set to one.

Step 6 is included to explain the situation in which a GPU
module completes its task and becomes idle. For instance, in the
ongoing-task list, we do not see the entry for G1 any more, and
the RS field for entry G1 in the processor status table is 0. This
indicates that G1 can receive a new workload and start working.
Unlike a CPU core, we assume that a GPU module has eight cores
in this example. Consequently, eight elements in the upcoming-
task list are grouped into a new data chunk and are assigned to G1.
This chunk, indexed by e1, contains d92–d99 or the top eight
entries in the upcoming-task list. In step 7, the ongoing-task list
now shows that G1 is processing data chink e1 (or equivalently
d92–d99).

In step 8, the ongoing-task list and the processor status table
indicate that CPU core C2 is done with its job. Consequently, a new
data element (d91) is assigned to this processing element, and it
resumes working in step 9.
0 1 2 3 4 5
Speedup

GT215 (baseline)

6

Fig. 6. Speedup of different CPU/GPU. This figure shows the speedup of different
configurations with respect to the CPU baseline (1C) and the GPU baseline (GT215).
Fig. 6(a) reveals that the speedup is not linear to the number of CPU cores due to
data dependencies and other complications hindering parallelization. Examining
Fig. 6(b) and Table 3 suggests that the performance is roughly proportional to the
memory bandwidth and the amount of GPU cores used.
4. Results and discussion

4.1. Experiment setup

We measured the runtime of the parallelized FARNA algorithm
(pFARNA) using 52 different architecture combinations. We used
the four types of CPUs and six types of GPUs listed in Tables 2 and
3, respectively, in order to generate these combinations. Note that
Table 2
CPU Configuration. The CPU configurations used in the experiments.

Configuration ID 1C 8C

Processor 2� Intel Xeon E5620
Number of cores Only 1 of 8 cores used 8
Frequency (GHz) 2.4
L2 Cache 256 KB per core
L3 Cache 8 MB per processor
System memory (GB) 12

Table 3
GPU Configuration. The GPU configurations used in the experiments.

Configuration ID G92a G92b

Processor (NVIDIA) 8800 GT GTS 250
Number of cores 112 128
Frequency (MHz) 1500 1836
Memory (MB) 512 512
Memory bandwidth (GB/s) 57.6 70.4
we use a unique identifier for each type of CPU or GPU for
notational convenience.

We generated the 52 combinations mentioned above as fol-
lows: First, we executed pFARNA on each of the four types of CPUs
without utilizing GPUs at all. Second, we combined each of the
four CPU types and each of the six GPU types, giving 24 additional
4Ca 4Cb

Intel Core 2 Quad Q6600 Intel Core i5-750
4 4
2.4 2.66
4 MB per two cores 256 KB per core
None 8 MB
8

GT200 GT215 GF104 GF106

GTX 260 GT 240 GTX 460 GTS 450
216 96 336 192
1242 1340 1350 1566
896 512 768 1024
111.9 32 86.4 57.73



Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–1022 1019
combinations. Finally, we considered 24 additional scenarios by
adding an extra GPU card to each of the previous 24 combinations.

The machine in each configuration was equipped with DDR3
main memory (size indicated in Table 2) and a single 1 TB SATA2
hard disk drive. The operating system used was 64-bit Microsoft
Windows Vista Business, and for the development of pFARNA, we
used the NVIDIA CUDA Toolkit 3.1 and Intel C++ compiler version
11.1 with OpenMP 3.0 support.

As the input to pFARNA, we prepared 32 RNA sequences from
the nucleic acid database (NDB) [24]. Given that the main usage of
FARNA is to predict the structure of small RNAs, the average length
of the 32 sequences used was 54, with the minimum and
maximum lengths being 6 and 158, respectively. To test pFARNA
with the MOHCA constraints mentioned earlier, we also prepared
the 158-nucleotide P4–P6 domain of the group I intron (PDB ID:
1GID) with its MOHCA constraints incorporated. Note that incor-
porating the MOHCA constraints typically increases the running
time of FARNA significantly, and the running time for this 1GID
sequence was the longest in our experiments.
4.2. Speedup by basic configurations

As the most basic test, we checked how the running time of
pFARNA is affected by using different CPU and GPU cores. Fig. 6(a)
shows the speedup of 4Ca, 4Cb and 8C over the reference case 1C.
Having more cores seemed helpful to reduce the runtime, but the
speedup was not directly proportional to the number of cores, but
1.00 1.00 1.00 1.001.00 1.00 1.00

2.81 2.81 2.81 2.812.81 2.811.07 2.07 3.21
0.59

5.14
3.11

1.58 2.87
5.08

0.62

8.59

3.04
3.24

7.77

1.20

7.12

7.25 4.66
5.54

4.37

1.89

5.04

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
26.00

S
pe

ed
up

 

Con

CPU
Primary GPU
Secondary GPU

1.00 1.00 1.00 1.001.00 1.00 1.00

2.76 2.76 2.76 2.762.76 2.761.07 2.07 3.21
0.82

5.14
3.11

1.63 2.92
5.13

1.17

8.64

2.55
2.92

5.11

0.97

5.22

5.73 3.96
5.04

4.37

0.18

4.55

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

S
pe

ed
up

 

Con

CPU
Primary GPU
Secondary GPU

Fig. 7. Speedup of each configuration per the baseline architecture. The speedup of eac
(with 158 nucleotides) with MOCHA constraints and (b) 1XJR (with 47 nucleotides). Eac
The overall speedups can be obtained by cumulating the breakdowns. This breakdown of
CPU hybrid and GPU only cases.
rather more limited. Although the FARNA code contains many
parts appropriate for parallelization, there still exist data depen-
dencies and other complications unsuitable for multi-threading.
The non-ideality presented in this plot reflects these limitations.
This figure also suggests that simply adding more CPU cores would
not be very helpful for acceleration.

Fig. 6(b) compares the speedups of the different GPU cores with
respect to the baseline architecture, GT215. All of the results include
the GPU kernel launch overhead, as well as the PCI-Express data
transfer overhead. Note that adding GF104 or GT200 to the system
accelerates the algorithm to a similar extent as that obtained using
configuration 8C. We observed that the performance was roughly
proportional to the memory bandwidth and the number of cores in
the system.
4.3. Speedup by various configurations

For each of the 32 input sequences, we measured the running
time of pFARNA on each of the 52 configurations. Fig. 7 shows the
speedup of each configuration over the baseline architecture 1C
for the two sequences 1GID (with 158 nucleotides) and 1XJR (with
47 nucleotides). To see the effect of doubling the number of GPU
cards, the speedups for the 24 single-GPU configurations and
the 24 double-GPU configurations are shown together in the plot.
Evidently, using GPUs on top of multi-core CPUs further acceler-
ated the execution of pFARNA significantly. For 1GID (the most
time-consuming case in our experiments), the maximum speedup
2.81 2.87 2.87 2.87 2.872.87 2.87 2.87
4.46 4.46 4.46 4.464.46 4.46 4.46

4.72
1.84

3.46
5.12

0.64

9.62

4.75 2.17 2.79
6.70

1.32

9.82

5.05

3.88

5.77
5.88

5.29

1.83

6.41

2.18
6.19 7.28

7.00

1.14

10.48

6.82

figuration 

2.76 2.88 2.88 2.88 2.882.88 2.88 2.88
4.60 4.60 4.60 4.604.60 4.60 4.60

4.77
1.83

3.45
5.11

1.10

9.61

4.74 1.78
4.92 6.42

0.56

6.82
4.91

2.89

5.77
5.08

4.53

1.36

4.73

2.18
3.95

5.01
7.14

0.75

8.45
6.82

figuration 

h configuration over the baseline architecture 1C for the two sequences: (a) 1GID
h bar shows the breakdown of speedups by CPU, primary GPU, and secondary GPU.
speedups can also be useful for comparing various configurations such as the GPU/



Table 4
Comparison of Speedup. This table summarizes the speedup of the various
configurations with respect to the 1C case.

PDB ID CPU Without GPU With GPU

Minimum Maximum

1GID 1C 1.00 1.59 (GT215) 10.36 (2�GF104)
4Ca 2.81 3.43 (GT215) 16.44 (2�GF104)
4Cb 2.87 3.46 (GT215) 18.90 (2�GF104)
8C 4.46 5.78 (GT215) 24.76 (2�GF104)

1XJR 1C 1.00 1.82 (GT215) 11.36 (2�GF104)
4Ca 2.76 4.93 (GT215) 15.95 (2�GF104)
4Cb 2.88 5.28 (GT215) 17.22 (2�GF104)
8C 4.60 5.16 (GT215) 19.47 (2�GF104) 0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140 160

C
om

pu
ta

tio
n 

tim
e 

(s
)

Sequence size (nts)

1C

8C + GF104
8C + GT200
8C

Fig. 8. Average running time versus input sequence length on different configura-
tions. We measured how the running time of pFARNA varies depending on the
input size. This plot shows the average running time versus input sequence length
on the two fastest (8C+GF104 and 8C+GT200) configurations, along with the
slowest (1C) and an intermediate configuration (8C). Evidently, as the length of the
input sequence grows, the performance gap between the baseline and the CPU/GPU
hybrid case widens.

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160

S
pe

ed
up

Sequence Length (nts)

Asynchronous CPU/GPU hybrid [Fig. 2(d)]

Synchronous CPU/GPU hybrid [Fig. 2(c)]

Fig. 9. Running time comparison of synchronous and asynchronous CPU/GPU
hybrid execution flows. This plot compares the running time of the two models
taken to predict the tertiary structure of the 32 RNA sequences of various lengths
(configuration: 4Cb+GF104). For short sequences (less than 20 nucleotides), the
synchronous model wins due to the overhead of the asynchronous model.
However, this overhead pays off as the length of the input sequences increases,
and the asynchronous hybrid shows better results.

Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–10221020
was 24.76 (in the case of the configuration using 8C with two
GF104 units), whereas the speedup by the CPU cores alone (8C)
was 4.46. For 1XJR, we observed a similar trend: using CPU cores
alone (8C) gave a 4.60 times speedup, whereas utilizing the GPUs
together with the CPUs produced a 19.47 times speedup over the
reference case. Table 4 summarizes the speedup of the various
configurations with respect to the 1C case.

Additionally, we measured how the running time of pFARNA
varies depending on the input size. Obviously, feeding a longer
sequence would take more time for structure prediction. We
tested pFARNA with the 32 different input sequences and mea-
sured the running time of each of the 52 configurations. Fig. 8
shows the two fastest (8C+GF104 and 8C+GT200) configurations,
along with the slowest (1C) and an intermediate configuration
(8C). For each input sequence on each architecture configuration,
we ran pFARNA 1000 times and recorded the average running
time, as plotted in Fig. 8. For sequences with less than 20
nucleotides, the differences among the different configurations
were not noticeable. As the size of the input sequence increases,
however, the performance gap between the fastest and slowest
configurations becomes more salient. Once again, we confirmed
the effectiveness of using GPUs on top of multi-core CPUs for
additional acceleration over the whole range of RNA sequence
lengths.

4.4. Speedup by asynchronous execution flow

To see the effect of using the asynchronous hybrid execution
flow shown in Fig. 2(d), we compared it with the synchronous
model depicted in Fig. 2(c) in terms of two aspects.

First, Fig. 9 compares the running time of the two models taken to
predict the tertiary structure of the 32 RNA sequences of various
lengths. The architecture configuration used for this experiment
was 4Cb with GF104 (a single GPU). For each sequence, the time for
structure prediction was measured 1000 times, and the figure shows
the average running time for each case. For very short RNA sequences
that have about a dozen or fewer bases, using the synchronous model
was faster. This is mainly due to the additional overhead incurred by
using the proposed dynamic task scheduling. However, for longer
sequences, using the asynchronous model produced better results,
producing 32.9% faster running time on average.

Second, we compared the utilization of CPU cores and GPUs by
each execution flow under comparison, as shown in Fig. 10. We
predicted the tertiary structure of the 1XJR sequence (47 nucleotides)
using the two different CPU/GPU execution flows and measured the
utilization of CPU cores and GPU for each model. We used 4Cb with
GF104 configuration. In the plot, grey areas indicate that a CPU or GPU
core is being utilized and white areas represent idle states. Note that
all white areas are not visible due to limited image resolution. For the
synchronous model, the average utilization of the four CPU cores was
62.96% and the utilization of GPUwas 51.32%. The CPU core that serves
as the host for the GPU is idle when the GPU is running, although this
fact is not clearly visible in the plot due to the limitations in image
resolution. By using the asynchronous model, we could improve the
utilization of both CPU cores and GPU. Consequently, for the asyn-
chronous model, the average utilization of CPU cores and the GPU
utilization increased to 83.92% and 74.34%, respectively. Overall, using
the asynchronous model gave over 33% gain in terms of CPU/GPU
utilization.

4.5. Remarks

Recently, the use of cloud computing is increasing due to
its cost-effectiveness and other advantages. Commercial services
such as Amazon Web Services (http://aws.amazon.com) provide
convenient and flexible parallelization platforms researchers can
utilize when they need powerful computing capabilities. The
FARNA simulation may also benefit from utilizing cloud comput-
ing. For example, we can distribute instances of the Monte Carlo
cycles in the FARNA flow (see Fig. 1) over multiple computing
nodes. Using thousands of cores is not uncommon these days, and

http://aws.amazon.com


Core 1
Core 2
Core 3
Core 4

GPU

Synchronous CPU/GPU hybrid [Fig. 2(c)]

Asynchronous CPU/GPU hybrid [Fig. 2(d)]

timebegin

Core 1
Core 2
Core 3
Core 4

GPU

begin

end

time end

busy idle

Fig. 10. Comparison of CPU/GPU utilization by synchronous and asynchronous
execution flows. We compared the utilization of CPU cores and GPUs by each
execution flow under comparison (configuration: 4Cb+GF104). By using the
asynchronous model, the CPU utilization increased from 62.96% to 83.92% and
the GPU utilization from 51.32% to 74.34%. The running time (from ‘begin’ to ‘end’
in the plot) was approximately 8.13 and 5.81 s for the upper and bottom plots,
respectively.

Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–1022 1021
we may reduce the overall running time of the simulation
significantly. Of course, to maximize the utilization of massively
parallel computing elements, we need to resolve dependencies
among tasks and also minimize the frequency of inter-node
communication. Otherwise, the use of cloud computing may fail
to deliver the expected performance improvement.

Certain tasks in the FARNA flow fit well single-instructionmultiple-
data (SIMD) machines such as GPUs. Calculating pairwise energy
between configurations is an example. Equipped with massively
parallel light-weighted cores, GPUs can deliver an unprecedented level
of computing power even at moderate price. In this paper, we used
GPUs with 96–336 cores and 512–1024-MB memory to produce the
presented results. Currently, the performance of GPUs is getting
improved at the pace exceeding the Moore's law. By utilizing more
powerful GPUs to come, the expected performance gain by employing
the proposed method will increase, assuming that we can effectively
handle the limitations of GPU computing such as difficulty in pro-
gramming and limited memory.
5. Conclusion

We profiled the FARNA algorithm for predicting the structure of
small RNAs and parallelized it using GPUs. We also describe our
approach to using both multi-core CPUs and GPUs for maximum
utilization of both types of computing cores. With respect to the
baseline architecture that uses a single CPU core, using eight CPU
cores along with two GPU cards resulted in a speedup of up to
24 times. Although we parallelized a specific algorithm to show the
effectiveness of our CPU-GPU hybrid framework, nothing prevents it
from being applied to other applications with similar assumptions
and premises. Given that most PCs these days are equipped with a
moderate GPU card, adopting our methodology will be very helpful for
accelerating algorithms.
Conflict of interest statement

None declared.
Acknowledgements

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (Ministry
of Education, Science and Technology) (No. 2011-0009963, No.
2012-R1A2A4A01008475, and No. 2010-0015504). The funders
had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Author's contributions: Y.J. carried out the parallelization and
drafted the manuscript. E.J. designed and conducted the analysis.
H.M. analyzed the result and drafted the manuscript. E.C. and
S.Y. participated in the design and analysis. S.Y. conceived and
wrote the manuscript. All authors read and approved the final
manuscript.
References

[1] E. Westhof, Toward atomic accuracy in RNA design, Nat. Methods 7 (4) (2010)
272–273.

[2] Ra'ed M. Al-Khatib, Rosni Abdullah, Nur'Aini A. Rashid, A survey of compute
intensive algorithms for ribo nucleic acids structural detection, J. Comput. Sci.
5 (10) (2009) 680–689.

[3] Bruce A. Shapiro, Yaroslava G. Yingling, Wojciech Kasprzak, Eckart Bindewald,
Bridging the gap in RNA structure prediction, Curr. Opin. Struct. Biol. 17 (April
(2)) (2007) 157–165.

[4] C.E. Hajdin, F. Ding, N.V. Dokholyan, K.M. Weeks, On the significance of an RNA
tertiary structure prediction, RNA 16 (7) (2010) 1340.

[5] Jes Frellsen, Ida Moltke, Martin Thiim, Kanti V. Mardia, Jesper Ferkinghoff-
Borg, Thomas Hamelryck, A probabilistic model of RNA conformational space,
PLoS Comput. Biol. 5 (June (6)) (2009) e1000406+.

[6] Rhiju Das, David Baker, Automated de novo prediction of native-like
RNA tertiary structures, Proc. Natl. Acad. Sci. 104 (September (37)) (2007)
14664–14669.

[7] Rhiju Das, Madhuri Kudaravalli, Magdalena Jonikas, Alain Laederach,
Robert Fong, Jason P. Schwans, David Baker, Joseph A. Piccirilli, Russ
B. Altman, Daniel Herschlag, Structural inference of native and partially folded
RNA by high-throughput contact mapping, Proc. Natl. Acad. Sci. 105 (March
(11)) (2008) 4144–4149.

[8] Shantanu Sharma, Feng Ding, Nikolay V. Dokholyan, iFoldRNA: three-
dimensional RNA structure prediction and folding, Bioinformatics 24 (Sep-
tember (17)) (2008) 1951–1952.

[9] Marc Parisien, Francois Major, The MC-Fold and MC-Sym pipeline infers RNA
structure from sequence data, 452 (March (7183)) (2008) 51–55.

[10] Magdalena A. Jonikas, Randall J. Radmer, Alain Laederach, Rhiju Das,
Samuel Pearlman, Daniel Herschlag, Russ B. Altman, Coarse-grained modeling
of large RNA molecules with knowledge-based potentials and structural filters,
RNA 15 (February (2)) (2009) 189–199.

[11] Andrew Leaver-Fay, Michael Tyka, Steven M. Lewis, Oliver F. Lange,
James Thompson, Ron Jacak, Kristian Kaufman, P. Douglas Renfrew, Colin
A. Smith, Will Sheffler, et al., Rosetta3: an object-oriented software suite for
the simulation and design of macromolecules, Methods Enzymol. 487 (2011)
545–574.

[12] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A.
Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al. The landscape of parallel
computing research: a view from Berkeley, Technical report, Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley,
2006.

[13] G. Rizk, D. Lavenier, Gpu accelerated rna folding algorithm, Computational
Science–ICCS 2009, 2009, pp. 1004–1013.

[14] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, K. Schulten,
Accelerating molecular modeling applications with graphics processors,
J. Comput. Chem. 28 (16) (2007) 2618–2640.

[15] David Baker, Andrej Sali, Protein structure prediction and structural genomics,
Science 294 (October (5540)) (2001) 93–96.

[16] K. Binder, Monte-Carlo Methods, Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
[17] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory

programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55.
[18] David R. Butenhof, Programming with POSIX Threads, Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1997.
[19] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David

B. Kirk, Wen-mei, Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA, In: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP '08, New York, NY, USA, 2008. ACM, pp. 73–82.

[20] David B. Kirk, Wen Mei, Programming Massively Parallel Processors: A Hands-
on Approach, 1st edition, Morgan Kaufmann Publishers, Inc., San Francisco,
CA, USA, 2010.

[21] Stanimire Tomov, Rajib Nath, Jack Dongarra, Accelerating the reduction to
upper Hessenberg, and bidiagonal forms through hybrid GPU-based comput-
ing, Parallel Comput. 36 (December (12)) (2010) 645–654.

[22] Wenfeng Shen, Daming Wei, Weimin Xu, Xin Zhu, Shizhong Yuan, Parallelized
computation for computer simulation of electrocardiograms using personal
computers with multi-core CPU and general-purpose GPU, Comput. Methods
Programs Biomed. 100 (October (1)) (2010) 87–96.

[23] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, et al., Numerical
Recipes, vol. 547, Cambridge University Press, 1986.

http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref1
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref1
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref2
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref2
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref2
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref3
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref3
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref3
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref4
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref4
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref5
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref5
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref5
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref6
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref6
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref6
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref7
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref7
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref7
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref7
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref7
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref8
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref8
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref8
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref10
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref10
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref10
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref10
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref11
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref11
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref11
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref11
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref11
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref14
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref14
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref14
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref15
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref15
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref16
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref16
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref17
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref17
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref18
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref18
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref20
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref20
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref20
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref21
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref21
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref21
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref22
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref22
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref22
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref22
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref23
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref23


Y. Jeon et al. / Computers in Biology and Medicine 43 (2013) 1011–10221022
[24] Helen M. Berman, John Westbrook, Zukang Feng, Lisa Iype, Bohdan Schneider,
Christine Zardecki, The nucleic acid database, Acta Crystallogr. Sect. D 58 (June
(6)) (2002) 889–898.

Yongkweon Jeon is a Ph.D. student at the Department of Electrical and Computer
Engineering, Seoul National University, Seoul, Korea. His research interests include
high-performance bioinformatics, GPU programming, and data mining.

Eesuk Jung received the M.S. degree in electrical engineering from Yonsei
University, Seoul, Korea in 2012. His research area is RNA bioinformatics.

Hyeyoung Min received the B.S. and M.S. degrees in pharmacy from Seoul National
University, Seoul, Korea, in 1996 and 1998, respectively, and the Ph.D. degree in
cellular and molecular pathology from the University of California, Los Angeles,
in 2004, and the M.S. degree in statistics from Stanford University, Stanford, CA,
in 2008. She was a Postdoctoral Research Scientist at Stanford University.
She is currently an Assistant Professor in the College of Pharmacy, Chung-Ang
University, Seoul, Korea. Her current research interests include RNA bioinformatics
and microRNA function in pathogenesis.
Eui-Young Chung received the B.S. and the M.S. degree in electronics and
computer engineering from Korea University, Seoul, Korea. in 1988 and 1990,
respectively, and the Ph.D. degree in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 2002. From 1990 to 2005, he was a Principal Engineer with
SoC R&D Center, Samsung Electronics, Yongin, Korea. He is currently a professor
with the School of Electrical and Electronics Engineering, Yonsei University, Seoul,
Korea. His research interests include bio-computing and VLSI design.

Sungroh Yoon received the B.S. degree in electrical engineering from Seoul
National University, Korea, in 1996, and the M.S. and Ph.D. degrees in electrical
engineering from Stanford University, CA, in 2002 and 2006, respectively. From
2006 to 2007, he was with Intel Corporation, Santa Clara, CA. Previously, he held
research positions with Stanford University, CA, and Synopsys, Inc., Mountain View,
CA. Dr. Yoon was an assistant professor with the School of Electrical Engineering,
Korea University from 2007 to 2012. Currently, he is an assistant professor with
the Department of Electrical and Computer Engineering and also with the Inter-
disciplinary Program in Bioinformatics, Seoul National University, Korea. His
research interests include RNA bioinformatics, metagenomics, and high-performance
bioinformatics.

http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref24
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref24
http://refhub.elsevier.com/S0010-4825(13)00123-6/sbref24

	GPU-based acceleration of an RNA tertiary structure prediction algorithm
	Introduction
	Background
	RNA structure prediction
	Fragmented assembly of ribonucleic acid
	Parallelization with CPU/GPU

	Methods
	Execution flows
	Hierarchical examination of the FARNA algorithm
	Identification of parallelization target and details of parallelization
	Details of dynamic task scheduler

	Results and discussion
	Experiment setup
	Speedup by basic configurations
	Speedup by various configurations
	Speedup by asynchronous execution flow
	Remarks

	Conclusion
	Conflict of interest statement
	Acknowledgements
	References




